五邑大学40周年校庆数学与计算科学学院系列学术报告:Geometric characterizations of freely quasiconformal mappings in real Banach spaces
发布时间: 2025-03-12
报告题目:Geometric characterizations of freely quasiconformal mappings in real Banach spaces
摘要:This talk focuses on four classical topics in geometric function theory in one complex variable. These topics include the Biberbach conjecture (i.e., de Branges Theorem), the generalized Zalcman conjecture, the Fekete and Szego inequality, and the successive coefficients difference bounds. The paper discusses sharp results obtained for biholomorphic starlike mappings in several complex variables under specific restriction conditions. It is demonstrated that relatively weaker versions of the Biberbach conjecture, the generalized Zalcman conjecture, the Fekete and Szego inequality, and the successive homogeneous expansions difference bounds (or the Goluzin problem) for biholomorphic starlike mappings in several complex variables are proven, with most of them being reduced to the related results in one complex variable.
报告时间:2025年3月14日16:00—17:00
报告地点:北主楼1204
报告人简介:刘小松,岭南师范学院三级教授,闽南师范大学兼职硕导,1991年本科毕业于吉首大学,1994年硕士毕业于广西大学,2005年获中国科学技术大学博士学位。曾任岭南师范学院数学与统计学院的副院长。主要研究兴趣是多复变数Bieberbach猜想、多复变数星形映射偏差定理、多复变数Bohr不等式、多复变数推广的Zalcman猜想及多复变数推广的Fekete-Szego不等式等。在《Sci.China.Math.》《J.Math.Anal.Appl.》等一级刊物以上期刊发表第一作者论文约40篇,其中,SCI收录约30篇。现主持完成国家自科基金面上项目1项,参与国家自科基金面上项目3项,地区项目1项,主持完成省自科基金2项。获岭南师范学院教学名师等荣誉称号,现为广东省高校数学教学指导委员会委员。
欢迎感兴趣的老师和学生参加!
五邑大学科技处
数学与计算科学学院
2025年3月12日